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We investigate how chaos propagates in the solution of Burgers equation
“tu+u “xu=0 with initial condition u( · , 0) distributed as a white noise on R+

and 0 on R−. We describe the evolution of the shock front that travels to the
left. Asymptotics are given for both large and small time t.
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1. INTRODUCTION

This work is related to the study of the solutions of Burgers/Riemann
equation

“tu+u “xu=0, (1)

when the initial condition u( · , 0) is random. Even for very smooth initial
conditions the solutions of (1) may develop shocks at finite time and
become multi-stream. We select the ‘‘physical’’ solution by adding a vis-
cosity term “tu+u “xu=E “

2
xxu and then let E tend to 0 (E > 0 corresponds

to the inverse of Reynold’s number). We obtain by this way the unique
(weak) solution of (1) fulfilling some entropy conditions and usually called
‘‘entropy solution’’ of (1), see refs. 1–3. Burgers equation can be viewed as
a simplified version of Navier–Stokes equation. If we think to the pheno-
menon of turbulence, it is interesting to understand the time-evolution of
the solutions of (1) when the initial conditions are very chaotic. This is the
starting point of a wide literature on solutions of (1) with random initial
conditions. The case when u( · , 0) is distributed as a white noise has raised
a special interest, see, for example, refs. 4–8. A white noise is the derivative
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Fig. 1. Shape of x W u(x, t).

(in a weak sense) of a Brownian motion. This is a very sharp initial condi-
tion, since it is not a real function but rather a distribution. It also corre-
sponds to a completely uncorrelated initial data, which may be viewed has
an analog in continuous space of random independent identically distrib-
uted (i.i.d.) variables. For those reasons, white noise appears as a ‘‘natural’’
model of chaos. We focus henceforth on the entropy solution of (1) with
initial condition

u( · , 0)=˛white noise on ]0, .[,

0 on ] − ., 0].
(2)

The aim of this paper is to understand how chaos, initially at the right of 0,
propagates to the left. The shape of the solution at a given time t > 0 is
already well-known. There exists a strong shock, we shall call shock front,
which propagates to the left. At its left u( · , t) equals 0. At its right
x W u(x, t) is a.s. a tooth-path, which is composed of pieces of line of slope
1/t separated by a discrete sequence of shocks, see Fig. 1.

Our goal is to describe the shock front, in particular its location xt

and its strength Mt. We must emphasize that the other characteristics of
x W u(x, t) are well-known. Indeed, if we write xn(t) and Mn(t)/t for
the location and the strength at time t of the nth shock at the right of
the shock front, then (xn(t), Mn(t))n ¥ N is a Markov chain initialized by
(x0(t), M0(t))=(xt, Mt) with known transitions,2 see Groeneboom (9) or

2 In fact, Groeneboom (9) or Frachebourg–Martin (7) have computed these transitions for two-
sided white noise initial velocity, but they remain unchanged in the one-sided case.

Frachebourg and Martin. (7) The time evolution of the shocks at the right of
xt is the same as in the case where u( · , 0) is a white noise on the whole
line R. This evolution is depicted in refs. 8 and 10. Some other quantities
have also been computed (for example the flux of mass crossing a given
point x ¥ R), we refer to refs. 7, 11, and 12 for recent works on the topic.

It is convenient to describe the solution of (1) with initial condition (2)
in terms of a system of ballistic aggregation. This system involves the sticky
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particles introduced by Zeldovich in astrophysics. Actually, Burgers equa-
tion (1) appears as a model for the study of the formation of the large scale
structures of the universe, see refs. 13–15 and also ref. 16. Consider at time
t=0, particles of mass 1 on a one-dimensional lattice, say Z. Assume that
the particles at the left of 0 are at rest and give random i.i.d. velocities to
the particles at the right of the origin. Then, let the system evolve according
to the (deterministic) dynamic of free sticky particles: between collisions the
particles move at constant speed, and when some of them meet, they stick
and merge into a new particle whose mass, respectively momentum, equals
the sum of the masses, respectively momenta, of the particles which have
collide. Such collisions dissipate energy. It is remarkable that as soon as the
law of the initial velocities of the particles initially in Z+ is centered with
finite variance, the hydrodynamic limit of this system can be completely
described in terms of the solution of (1) with initial condition (2), see ref. 17
for proof. Indeed, the velocity field at time t of the hydrodynamic limit of
the previous system exactly corresponds to the solution u( · , t) at time t of
(1) with initial velocity (2). Moreover, the macroscopic clusters (=clusters
of positive mass) of the ballistic model are isomorphic to the shocks of
x W u(x, t). More precisely, the locations of the macroscopic clusters
exactly correspond to the locations of the shocks of x W u(x, t), and the
masses of the clusters correspond to the strength of the shocks. The shape
of the system at time t > 0 is thus the following. There a massive front
cluster traveling to the left. Its location is xt and its mass Mt. At its left
there are infinitesimal particles at rest, which do not have yet been per-
turbed by the turbulence. At its right all particles have clump into macro-
scopic clusters, whose locations (xn(t))n ¥ N form a discrete sequence of
[xt, .[, see Fig. 2. Their masses are given by (Mn(t))n ¥ N. We shall mainly
use thenceforth this description of the solution of (1) with initial condition (2),
since it is more natural to speak of collisions or aggregation of clusters than
of collisions or aggregation of shocks.

The rest of the paper is organized as follows. In Section 2, we recall
some standard features on Burgers turbulence. Section 3 is devoted to
the calculation of the statistics of the shock front at a fixed time t. In the
last section, the temporal evolution of the shock front is depicted and
asymptotics are computed for large or small time t.

Fig. 2. Shape of the system at time t > 0.
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2. PRELIMINARIES

2.1. Standard Features on Burgers Turbulence

As soon as the initial potential W satisfies the condition Wz ° z2 when
|z| Q . (which is satisfied with probability one when W is a Brownian
motion), it is well-known that the state of the system can be fully described
in terms of W. More precisely, every physical quantities may be expressed
in terms of the right-most location a(x, t) of the minimum of z W
Wz+

1
2t (z − x)2 on R. In a geometrical point of view, a(x, t) may be inter-

preted as follows. Bring up a parabola z W − 1
2t (z − x)2+C until it touches

the graph of the initial potential z W Wz. Then a(x, t) corresponds to the
abscissa of the right-most contact point, see Fig. 3. Physically, a(x, t)
represents the right-most initial location of the particles that lie in ] − ., x]
at time t. A macroscopic cluster is then located at x ¥ R, if and only if
a(x, t) > a(x − , t) :=limz ‘ x a(z, t), or in other words if and only if the
parabola z W − 1

2t (z − x)2+C touches the initial potential z W Wz at at least
two points. The mass of this cluster then equals a(x, t) − a(x − , t), and its
velocity is enforced by the conservation of momentum, viz

u(x, t)=
1

a(x, t) − a(x − , t)
(Wa(x, t) − Wa(x − , t))=

1
2t

(2x − a(x, t) − a(x − , t)),

see Fig. 3 for the geometrical interpretation of these quantities. Finally, the
velocity field is given at any point x ¥ R where z W a(z, t) is continuous, by
the celebrated Hopf–Cole formula (see refs. 2 and 3)

u(x, t)=
1
t

(x − a(x, t)).

The initial condition (2) corresponds to an initial potential

W=˛Brownian motion on ]0, .[,

0 on ] − ., 0].

Fig. 3. Geometrical interpretation of the physical quantities.
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It is known that there exists in this case a shock front, at the right of which
the function x W a(x, t) is a.s. a step function and one says that the shock
structure is discrete. This exactly corresponds to the fact that all particles at
the right of xt have merge into a discrete sequence of macroscopic clusters.
At the left of the shock front a(x, t)=x, which means that in ] − ., xt[ the
density of mass equals 1 and the velocity field 0. We thus have at the left of
xt infinitesimal particles at rest, uniformly spread on ] − ., xt[.

2.2. Analyzing the Shock Front

We focus henceforth on the shock front and call xt its location. The
front cluster consists of the particles initially in [xt, a(xt, t)]. The mass Mt

of the front cluster thus equals mt − xt, with the notation mt=a(xt, t).
These quantities may be interpreted in geometrical terms of the initial
potential W as follows. Take a parabola z W − 1

2t (z − x)2 and let x increase
from − . until the parabola touches the graph of the Brownian motion
(Wz; z \ 0). Then xt is the value of x for which the parabola touches the
initial potential, and mt is the abscissa of the contact point, see Fig. 3. The
ordinate pt of the contact point represents the momentum of the front
cluster. A glance at Fig. 4 shows that

pt=−
1
2t

(mt − xt)2=−
1
2t

M2
t .

It is interesting for our analysis to interpret these miscellaneous quan-
tities in terms of the first passage time Ty :=inf{z \ 0; Wz [ − y} of the
Brownian motion below the level − y. We recall that T is a subordinator,
viz an increasing Markov process with stationary and independent

Fig. 4. Geometrical interpretations of the shock front.
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increments. A moment of thought shows that mt takes value in the set
M :={z \ 0; Wz=inf0 [ u [ z Wu}. The process y W Ty is the right-continu-
ous inverse of z W inf0 [ u [ z Wu, so that xt and pt corresponds to the
minimum and the right-most location of the minimum of y W Ty − `2ty,
see Fig. 4. This minimum is achieved since, according to the law of the
iterated logarithm,

lim inf
y Q .

2 log log y
y2 Ty=1 a.s.,

see, for example, III.5 Theorem 14 in ref. 18.

3. STATISTICS AT A FIXED TIME t

The scaling property (Tly; y \ 0)=law (l2Ty; y \ 0) of the process y W Ty

entails the equality in law

(t2/3(Tt − 1/3y − `2t−1/3y); y \ 0)=law (Ty − `2ty; y \ 0).

According to the above geometrical analysis of the system, the parameters
of the shock front follow the scaling property

(xt, pt, Mt, mt)=law (t2/3x1, t1/3p1, t2/3M1, t2/3m1). (3)

We can thus focus on time t=1. The shock front is then completely
described by the variables (x1, M1), since p1=− 1

2 M2
1 and m1=M1+x1. The

law of (x1, M1) can be easily computed from the work of Groeneboom. (9)

We denote by Ai and Bi the Airy functions (see ref. 19 on p. 446 for
the definition) and following Groeneboom we introduce the functions
L: R Q R+ and g: R Q R+ which have Fourier transform

L̂(l)= F
R

eilsL(s) ds=p21/3 1Bi(i21/3l+2−2/3x2)

−
Bi(i21/3l) Ai(i21/3l+2−2/3x2)

Ai(i21/3l)
2 and

ĝ(l)=F
R

eils g(s) ds=
21/3

Ai(i2−1/3l)
.
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We also write h(m, · ): R+
Q R+ for the function either defined by its

Laplace transform

F
.

0
e−lxh(m, x) dx=

Ai(22/3m+2−1/3l)
Ai(2−1/3l)

,

or by the series

h(m, x)=21/3 C
.

n=1

Ai(22/3m − wn)
AiŒ( − wn)

exp( − 21/3xwn),

where 0 > − w1 > − w2 > · · · denotes the zeros of Ai ranked in decreasing
order.

Theorem 1 (Statistics at Time t=1). In the above notation, the
law of x1 and (x1, M1) are given by the following formulaes

P(x1 > − x)=e−x3/3L(x) and (4)

P(−x1 ¥ dx, M1 ¥ dM)=
M
2

e−x3/3g(2−2/3M) h(2−4/3x2, 2−2/3(M − x)),
(5)

for M, x > 0.

Proof of Theorem 1. The event {x1 > − x} exactly corresponds to
the event {Wz \ − 1

2 (z+x)2; -z \ 0}, and the probability of the latter is
given by Theorem 3.1 in ref. 9. We focus now on the joint law of (x1, M1).
We write Mx=min{Wz+

1
2 (z+x)2; z \ 0} and yx for the largest abscissa

where this minimum is achieved. We can express the probability density of
(x1, M1) in terms of Mx and yx, indeed

P(−x1 ¥ dx, M1 ¥ dM)=lim
h a 0

1
h

P(Mx+h > 0, Mx < 0, yx+x ¥ dM) dx.
(6)

Notice that yx+h [ yx, so that

Mx+h=min {Wz+
1
2 (z+x)2+h (z+x)+1

2 h2; z \ 0}

=˛=Mx+h (yx+x)+h2/2, when yx+h=yx,

[ Mx+h (yx+x)+h2/2, else.
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It can be shown that the probability density P(Mx+h < 0, Mx > 0, yx+h+
x < M, yx+x ¥ dM)/ dM is negligible with respect to h, for example with
the following inequalities

P(Mx+h < 0, Mx > 0, yx+h+x < M, yx+x ¥ dM)/dM

[ P 1 −
h2

2
− hM < Mx < 0, yx+h+x < M, yx+x ¥ dM2;dM

[ P 1 −
h2

2
− hM < Mx < 0, yx+x ¥ dM2;dM
z

=h Q 0O(h)

× P 1yx+h+x < M :− h2

2
− hM < Mx < 0, yx+x=M2

z
=h Q 0o(1)

.

The calculation of the limit (6) is now straightforward:

P(Mx+h > 0, Mx < 0, yx+x ¥ dM)/dM

’ P 1 −
h2

2
− hM < Mx < 0, yx+x ¥ dM2;dM

’ h MP(Mx ¥ d0, yx+x ¥ dM)/d0 dM,

when h Q 0+. The probability density of Mx and yx is given by Corollary 3.1
in ref. 9 and putting pieces together one obtains formula (5). L

4. TIME EVOLUTION OF THE SHOCK FRONT

The dynamic of the shock front (or front cluster) is governed by two
phenomena. Its movement to the left is continuously braked by the infini-
tesimal particles at rest on its left, but sometimes a macroscopic cluster on
its right, catches it and increases sharply its velocity.

It follows from the identity pt=− 1
2t M2

t that the time evolution of the
cluster can be completely described in terms of t W Mt. For example, the
time evolution of xt is given by

xt=−
1
2

F
t

0
Ms

ds
s

.
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Next theorem characterizes the process t W Mt. It involves again the func-
tion g of the previous section but also the function p: R+

Q R+ defined by

p(x)=2 C
.

k=1
exp( − 21/3wkx),

where, as before, 0 > − w1 > − w2 > · · · represents the zeros of Ai ranked
in decreasing order.

Theorem 2 (Statistics of the Dynamics). The mass t W Mt of
the front cluster is an increasing (non homogeneous) Markov process with
infinitesimal generator at time t > 0

Gt f(M)=
M
2t

fŒ(M)+F
.

0
(f(M+m) − f(M))

×
m(M+m)

4t3 p((2t)−2/3m)
g((2t)−2/3(M+m))

g((2t)−2/3M)
dm,

for M > 0 and f: R+
Q R with derivatives of any order and compact

support.

Proof of Theorem 2. The momentum |pt | of the front cluster corre-
sponds to the right-most location of the minimum of y W Ty − `2ty, see
Section 2. It is then standard that t W pt is a Markov process. Indeed,
a path decomposition due to Millar (20) entails that conditionally on |pt |=p,
the processes (Ty, y [ |pt |) and (T|pt|+y − T|pt|, y \ 0) are independent. For
t1 < t < t2 |pt1

| can be viewed as the location of the minimum of (Ty −
`2t1 y; y [ |pt |)and |pt2

| − |pt |as the locationof theminimumof(T|pt|+y − T|pt| −

`2t2(y+|pt |); y \ 0). The Markov property of pt and also of Mt=
`2t |pt | follows.

Assume that between time t and time t+s the path u Q Mu is contin-
uous, which means that during this time interval no macroscopic clusters
aggregate to the front cluster. According to the law of conservation of
momentum pt=pt+s, the mass of the front cluster at time t+s is

Mt+s==1+
s
t

Mt.

Let us estimate now the contribution in the growth of Mt of the collisions
of macroscopics clusters coming from the right. We need to compute
the probability that a cluster of mass % m sticks to the front cluster at
time % t.
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Lemma 1. When h, g Q 0+, we have the asymptotic

P(m [ Mt+h − Mt [ m+g | Mt=M)

’ h g
m(m+M)

4t3 p((2t)−2/3m)
g((2t)−2/3 (M+m))

g((2t)−2/3M)
.

The asymptotic of Lemma 1 is obtained in connecting P(m [ Mt+h −
M [ m+g | Mt=M) to the rate of jump of x W a(x, t), which have been
computed by Groeneboom (see ref. 9, Theorem 4.1). Assume that when
h, g Q 0+

P(m [ Mt+h − M [ m+g | Mt=M)

’ P(a(h(M+m)/2t, t) − a(0, t) ¥ [m, m+g] | a(0, t)=M). (7)

As in ref. 11, p. 558, we have

P(a(h(M+m)/2t, t) − a(0, t) ¥ [m, m+g] | a(0, t)=M)

’
h, g Q 0+h g

m(m+M)
4t3 p((2t)−2/3m)

g((2t)−2/3 (M+m))
g((2t)−2/3M)

,

and Lemma 1 follows. A rigorous proof of formula (7) can be obtained by
adapting the proof of Lemma 1 in ref. 11 to our case. We omit the details
and just sketch the argument. The shock structure at the right of the front
shock is discrete, so that we can forget the effects of the collisions during
small time intervals. A cluster of mass % m and velocity % v collides with
the front cluster during the time interval [t, t+h], ‘‘if and only if ’’ the first
cluster at the right of xt has mass % m, velocity % v and is located in
[xt, xt − (v − vt) h], where vt < 0 denotes the velocity of the front cluster.
The first cluster at the right of xt is build from the particles initially in the
interval ]mt, mt+m[. Up to time t, these particles do not have interacted
with the other particles so that, according to the conservation of momen-
tum, the velocity of their center of mass is constant et equals therefore v. At
the initial time the center of mass is located at 1

2 (2mt+m), whereas at time
t it is located at % xt. Velocity v thus equals

v %
1
t
1xt −

1
2

(2mt+m)2 % −
1
2t

(2Mt+m).

Since vt=− 1
2t Mt the event ‘‘a cluster of mass % m collide with the front

cluster during the time interval [t, t+h]’’ corresponds roughly to the event
a(xt+

h
2t (Mt+m), t) − a(xt, t) % m. According to the Markov property of
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x Q a(x, t), this event is distributed conditionally on Mt=M as the event
a( h

2t (M+m), t) − a(0, t) % m conditionally on a(0, t)=M. L

We can evaluate the infinitesimal generator Gt at time t > 0 of t W Mt.
For f with compact support and derivatives of any order and M > 0,
Gt f(M) is defined as

lim
h Q 0+

1
h

(E(f(Mt+h) | Mt=M) − f(M))

= lim
h Q 0+

1
h

E(f(Mt+h) − f(Mt) | Mt=M).

Recall that when t Q Mt does not jump during the time interval [t, t+h],
then Mt+h=`1+h

t Mt, so that

1
h

E(f(Mt+h) − f(Mt) | Mt=M)

’
h Q 0+ 1

h
1f 1=1+

h
t

M2− f(M)2

+
1
h

F
.

M(`1+h/t − 1)

(f(M+m) − f(M)) P(Mt+h − Mt ¥ dm | Mt=M)

’
h Q 0+ M

2t
fŒ(M)+F

.

0
(f(M+m) − f(M))

×
m(m+M)

4t3 p((2t)−2/3m)
g((2t)−2/3 (M+m))

g((2t)−2/3M)
dm.

The proof of Theorem 2 is complete. L

Remark. Call Tg the first time after time t at which a macroscopic
cluster collides with the front cluster and mg the mass of this cluster. One
may be interested in evaluating the law of (Tg, mg). It is an easy task when
one follows the argument of the proof of Theorem 1 in ref. 11. Using the
Markov property of t W Mt, the conditional probability density of (Tg, mg)
given Mt=M can be written as

P(Tg ¥ ds, mg ¥ dm | Mt=M)

=P(Tg \ s | Mt=M) P 1Tg ¥ ds, mg ¥ dm | Ms== s
t

M2 .
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As in ref. 11, the first term equals

P(Tg \ s | Mt=M)= lim
y Q 0+

“

“a
Pa 1Wz \ −

1
2s

z 1z+2M = s
t
2 ; -z \ 02

“

“a
Pa 1Wz \ −

1
2t

z(z+2M); -z \ 02

=1 t
s
21/3

exp 1 −
M3

6
1 1

t2 −
1

`t3s
22 g(2−2/3s−1/6t−1/2M)

g((2t)−2/3M)
.

The second term can be evaluate thanks to Lemma 1:

P 1Tg ¥ ds, mg ¥ dm | Ms== s
t

M2

=dm ds ×
m 1= s

t
M+m2

4s3 p((2s)−2/3 m)
g 1 (2s)−2/3 1= s

t
M+m22

g(2−2/3s−1/6t−1/2M)
.

Combining the two previous expressions yields the formula

P(Tg ¥ ds, mg ¥ dm | Mt=M)

=
t1/3 m 1= s

t
M+m2

4 s10/3 exp 1 −
M3

6
1 1

t2 −
1

`t3s
22

× p((2s)−2/3 m)
g 1 (2s)−2/3 1= s

t
M+m22

g((2t)−2/3M)
ds dm.

One may also be interested in having the asymptotic behaviour of xt when t
tends to 0 or ..

Proposition 4.1 (Asymptotics of xt). At large time t we have,
with probability one, the asymptotics:

lim sup
t Q .

− xt

(t2 log log t)1/3=
25/3

3
, and (8)

lim
t Q .

− xt

t2/3 (log t)2/3+d=., - d > 0. (9)
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Similar asymptotics hold for small time t. Indeed, the same argument
shows that a.s.

lim sup
t Q 0

− xt

(t2 log |log t|)1/3=
25/3

3
, and

lim
t Q 0

− xt

t2/3 |log t|2/3+d=., - d > 0.

Proof of Proposition 1. The asymptotics of xt derive from the law
of the iterated logarithm for the process y Q Ty

lim inf
y Q .

Ty
log log y

y2 =
1
2

a.s., (10)

and for any d > 0

lim
y Q .

Ty

y2(log y)2+d
=0 a.s., (11)

see, for example, III.5 Theorem 14 in ref. 18. We first focus on formula (8).
Write for t > 0

k(t)=
3

25/3 t (log log t)1/3,

and for any E > 0,

kg
+(y)=sup

t \ 0
{ − (1+E) k(t)+`2 ty}.

Call t0 the location of this supremum. It is the solution of the equation

− (1+E)
2
3

a t−1/3
0 (log log t0)1/3 11+

1
2 log t0 log log t0

2+= y
2t0

=0,

where a= 3
25/3 . When y tends to infinity, then so does t0, and conversely.

Moreover, we then have the estimate

=y
2

’
2
3

(1+E) at2/3
0 (log log t0)1/3. (12)

On a Shock Front in Burgers Turbulence 399



In particular, for large t0 we can estimate k(t0) in terms of y and then
obtain

kg
+(y) ’

y Q . 1
(1+E)3 ×

y2

2 log log y
.

Combining this estimate with (10) yields to the formula

lim inf
y Q .

Ty

kg
+(y)

=(1+E)3, a.s.

As a consequence, with probability one and for y large enough kg
+(y) < Ty,

which implies that for t large enough xt > − (1+E) k(t) and thus that

lim sup
t Q .

− xt

k(t)
[ 1+E, a.s. (13)

Substitute now − E to E. The function

kg
− (y)=sup

t \ 0
{ − (1 − E) k(t)+`2 ty}.

satisfies the equality

lim inf
y Q .

Ty

kg
− (y)

=(1 − E)3, a.s.,

so that there exists a.s. an increasing sequence yn Q . fulfilling the
inequality kg

− (yn) > Tyn
. Call tn the location of the supremum of t W

− (1 − E) k(t)+`2 tyn. The estimate (12) is transformed in

=yn

2
’

n Q . 2
3

(1 − E) a t2/3
n (log log tn)1/3,

which forces tn to tends to infinity when n Q .. Notice moreover that
xtn

< − (1 − E) k(tn), so that

lim sup
t Q .

− xt

k(t)
\ 1 − E, a.s., (14)

and let E tend to 0 in bound (13) and (14) to obtain

lim sup
t Q .

− xt

k(t)
=1, a.s.
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Formula (9) can be obtained following the same way. Write for t, l > 0

f(t)=
t2/3

(log t)2/3+E
and

fg
l (y)=sup

t \ 0
{ − l f(t)+`2ty}.

The asymptotics of fg
l (y) for large y are given by

fg
l (y) ’

y Q . 35+3E

l3 26 y2 (log y)2+3E.

A glance at formula (11) then shows that

lim
y Q .

Ty

fg
l (y)

=0, a.s.,

which implies that xt < − l f(t) for t large enough. In other words,

lim inf
t Q .

− xt

t2/3 (log t)2/3+E \ l, a.s. for any l > 0.

Let l tend to infinity to obtain formula (9). L
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